Am 18.03. kam es in Tokio Narita zu einer harten Landung eines A340-600, der gestreckten Variante des A340. Das Fahrwerk muss nun teilweise gewechselt werden, die Zelle wird noch auf Schäden untersucht.
Der Wind zum Zeitpunkt der Landung war stark böig, von vorne rechts. Er lag aber innerhalb der erlaubten Limits. Nach der Landung rollte das Flugzeug ganz normal zum Gate. Es gab keine Verletzten.
Der Unfall ereignete sich um 11:22 Ortszeit (03:22 morgens deutscher Zeit).
Der Flug war am 17.03. in München gestartet mit einer geplanten Abflugzeit von 15:45 deutscher Zeit. Somit hatte die Besatzung um 14:05 deutscher Zeit Briefingbeginn (Arbeitsantritt).
Die Landung fand also, wie auf diesen Umläufen üblich, nach mindestens 18 Stunden wach sein, entsprechend müde statt. Wobei nicht nur die absolute Zahl der wachen Stunden, sondern auch der Zeitpunkt im Biorhythmus von Bedeutung ist: 3:22 liegt im so genannten Tages-Rhythmus-Tief.
Sicherlich hatte die dreiköpfige Crew die Möglichkeit im Reiseflug für jeden Piloten 3 Stunden und 15 Minuten Pause einzuteilen, doch auch dass hilft nur mäßig. Auch wenn der A340 seinen Piloten einen abgeschlossenen Schlafraum bietet, funktioniert das Kommando für den menschlichen Körper – von jetzt auf gleich drei Stunden zu schlafen – nur bedingt.
Der erste Pilot erhält seine Pause dann nämlich am späten Nachmittag. Der zweite kann zwar am frühen Abend schlafen, muss seinen Schlaf aber dann abbrechen, wenn er eigentlich in seine Tiefschlaf-Phase gekommen wäre. Der Dritte schläft dann von 23:30 bis 2:30. Zu dieser Zeit kann man zwar sicherlich gut einschlafen, doch wer nach einem 14 h Arbeitstag nur 3 h geschlafen hat, der ist sicher nicht auf dem Höhepunkt seiner Leistungsfähigkeit.
Soweit die körperlichen Rahmenbedingungen, nun sehen wir uns die Windbedingungen an.
Wind hat auf der Nordhalbkugel generell die Eigenschaft im Sinkflug zum Boden linksdrehend zu sein. Das heißt, je weiter man sich dem Boden nähert, umso mehr dreht die Windrichtung nach links. Die Gründe dafür liegen in der Corioliskraft und der Bodenreibung.
Seitenwind von rechts (Anflug auf 16R (160 Grad), Wind aus 220 Grad mit 26 Knoten in Böen 39 Knoten) kommt also zu Beginn des Anflugs noch weiter von rechts. Mit Annäherung an die Bahn dreht er dann auf die am Boden gemessene Richtung. Dadurch nimmt die Seitenwindkomponente stetig ab und die Gegenwindkomponente zu.
Gleichzeitig nimmt die Windgeschwindigkeit aufgrund der Bodenreibung generell ab.
Dies alles ist vorteilhaft – solange der Wind nicht böig ist. Denn eine Böe ist prinzipiell nichts anderes als ein zum Boden durchschlagender Höhenwind. Und der kommt nun ja mit höherer Geschwindigkeit von weiter rechts. So erfährt das Flugzeug, wenn es im Ausschweben über der Bahn von einer Böe erwischt wird, eine plötzliche Zunahme der Seitenwind- und eine plötzliche Abnahme der Gegenwindkomponente.
Der Seitenwind verlangt nach heftigen Korrekturen in Quer- und Seitenruder, während der Verlust an Gegenwind einen Auftriebsverlust bedeutet, der mit dem Höhenruder abgefangen werden muss, was aber nur gelingen kann, wenn das Flugzeug genügend Fahrtüberschuss hat.
Wir haben hier also eine der seltenen Situationen in der Geschäftsfliegerei, in der sehr präzisere und schnell reagiert werden muss. Da ist der Halbschlaf um 3:22 in der Früh nicht unbedingt von Vorteil!
Sieht man sich das Video zum Vorfalls an, erkennt man die zum Teil heftigen Ausschläge des Seitenruders und der Querruder. Es gelingt dem fliegenden Piloten (Kapitän oder Co) sehr gut, das Flugzeug trotz einer heftigen Böe korrekt ausgerichtet auf der Centerline zu halten.
Als das Flugzeug die Nase senkt (eventuell hervorgerufen durch den Verlust an Gegenwind) sieht man unmittelbar danach, dass das Höhenruder stark nach oben ausschlägt. Der Pilot versucht also sofort eine Zunahme der Sinkrate zu verhindern, indem er am Sidestick (Airbus-Steuerknüppelchen) zieht. Die Maßnahme wirkt aber zu spät und das Flugzeug setzt mit hoher Sinkrate auf dem rechten Hauptfahrwerk zuerst auf.
Das ist bei Seitenwind von rechts auch die korrekte Konfiguration: Die rechte Fläche „hängt“ (ist tiefer geneigt), um ein Abdriften nach links zu verhindern; das Seitenruder ist nach links ausgeschlagen, um den Rumpf zur Landebahn auszurichten).
Sieht man das Video zum ersten Mal, könnte der Eindruck entstehen, dass der Pilot die Nase nach unten steuert, doch nach mehrmaligem Ansehen in Zeitlupe, erkennt man, dass ein entsprechender Ausschlag der Höhenruder NICHT zu sehen ist. Die Nick-Bewegung muss also eine andere Ursache haben, etwa den Verlust an Gegenwind.
Nun zum Flugzeug:
Der A340-600 (kurz A346) ist die gestreckte Variante des A340. Diese ist schon aufgrund der Rumpflänge bei der Landung anspruchsvoll, da die Gefahr des „Tail-Strike“, also die Bodenberührung des hinteren Rumpfes droht, wenn das Flugzeug zu lange geflared wird („Ausschweben“).
Ferner neigt die sehr ausgereizte Fläche dazu, im unteren Geschwindigkeitsbereich plötzlich an Auftrieb zu verlieren, wenn die Anfluggeschwindigkeit nur um wenige Knoten unterschritten wird. Übrigens weist die gestreckte Variante des A320, der A321, ähnlich problematisches Verhalten auf. Plötzlicher Verlust von Gegenwind, der für die Fläche nichts anderes als ein Verlust von Fluggeschwindigkeit bedeutet, hat also beim A346 stärkere Konsequenzen, als bei A340 oder A330, die als gemeinsame Flotte bei diesem Operator geflogen werden.
Die von Airbus stark herausgestellte Gemeinsamkeit und das dadurch angeblich ähnliche Verhalten der Muster untereinander, die durch die Fly-By-Wire Steuerung gegeben sein soll, kommt hier sehr an ihre Grenzen.
Der Pilot bewegt mit seinem Sidestick die Steuerflächen nicht direkt, sondern gibt nur Kommandos an die Flight-Computer, die daraus den entsprechenden Steuerausschlag berechnen. Dies ist eine komplett andere Philosophie, als sie von Boeing in deren Fly-By-Wire Flugzeugen (B777, B787) verfolgt wird. Dort, bei Boeing, werden die Steuersignale eins zu eins an die Steuerflächen übertragen (was auch der eigentlichen Definition von Fly-By-Wire entspricht). Die Airbus-Umsetzung sollte eigentlich besser als Fly-By-Computer beschrieben werden.
Es geht hier nicht darum, einen Flugzeug-Hersteller anzuprangern. Die Idee dieser Art der Flugzeugsteuerung ist prinzipiell gut. In der Praxis allerdings erreicht sie genau dann ihre Grenzen, wenn die Bedingungen erschwert sind. Denn dann sind erst recht die fundierten Kenntnisse und Fähigkeiten eines erfahrenen, menschlichen Piloten gefragt. Und die werden nun durch den Automatismus der „mitdenkenden“ Steuerung behindert:
Zunächst interpretiert ein Airbus alles, was der Pilot steuern möchte. Das Flugzeug nimmt dem Piloten dabei auch das Trimmen des Flugzeugs ab.
(Trimmen ist das Einstellen und Fixieren der Fluglage, damit diese ohne weitere Steuerimpulse gehalten wird.)
Störungen von außen, beispielsweise durch Böen, gleicht der Airbus selbst durch eigene Steuerimpulse aus. Das klingt zunächst gut und hilfreich: Solange die Luft einigermaßen ruhig ist, funktioniert das auch halbwegs gut. Sobald jedoch die Luft stark turbulent wird, nerven den Piloten die zu spät und damit kontraproduktiv einsetzenden eigenmächtigen Steuerimpulse der Flugcomputer mächtig.
Der Mensch kämpft nun mehr mit der Maschine als mit der Natur. PIO (Pilot Induced Oscillation) nennt Airbus das. Man könnte es aber auch AIO (Airbus Induced Oscillation) nennen. So führen die Flight-Control-Computer nach jedem Steuerinput, sei es vom Piloten oder vom Computer selbst angeordnet, die Trimmung nach. Das bedeutet, dass bei einem Anflug in böigem Wetter die Trimmung ständig in Bewegung ist, was bedeutet, dass das Flugzeug nie aerodynamisch auf seine Anfluggeschwindigkeit ausgetrimmt ist und somit nie aerodynamisch stabil fliegt.
In 100 Fuß (30 Meter) Höhe wechselt dann die Flugsteuerung in den Flare-Modus. Das bedeutet, dass die Trimmung auf dem letzten Wert (der, wie oben beschrieben, für die aktuelle Anfluggeschwindigkeit falsch sein kann) eingefroren wird und die Steuerinputs für das Höhenruder nun eins zu eins übertragen werden. Dadurch, dass die Trimmlage jedesmal anders sein kann, sind auch die nötigen Steuerinputs für einen vernünftigen Flare mit anschließender sanften Landung bei jeder Landung unterschiedlich. Dass der Sidestick dabei nicht einmal Feedback an den menschlichen Piloten liefert, erschwert das Ganze weiter.
Um die Frage und Antwort gleich vorweg zunehmen: Ein solcher Anflug kann nur von Hand geflogen werden, da das Limit für eine automatische Landung bei 20 Knoten Seitenwind liegt.
Nur der Auto-Thrust (automatische Schubregelung) kann bei diesen Bedingungen eingesetzt werden. Airbus empfiehlt dies. Doch der Auto-Thrust ist mit Vorsicht zu genießen. Der Schub wird dabei automatisch so geregelt, dass die eingegebene Anfluggeschwindigkeit beibehalten wird. Auch das klingt zunächst gut und hilfreich, ist es in böigem Wetter allerdings nicht. In unruhiger Luft führt der Auto-Thrust dazu, das sich der Schub ständig ändert. Ein erfahrener Pilot würde gleich den Zielwert setzen, trotz Fluggeschwindigkeitsschwankungen ruhig bleiben und den Schubwert nur langsam anpassen, falls wirklich nötig.
Bei unter der Fläche montierten Triebwerken bewirkt jede Schubänderung aber auch eine Lastigkeitsänderung um die Querachse, die durch Trimm- oder Höhenruder-Ausschläge ausgeglichen werden muss.
Mit dem Auto-Thrust wird also ein ohnehin schon unruhiger Anflug noch unruhiger. Ferner zieht der Auto-Thrust, in Bodennähe nur über den Radarhöhenmesser gesteuert, die Leistung plötzlich auf Leerlauf zurück, damit man landen kann, ohne dabei die Gesamtenergie-Situation des Flugzeugs zu berücksichtigen.
Diese Lastigkeitsänderung führt dazu, dass die Nase sich senkt, wenn man nicht direkt gegensteuert. Verliert man gerade an Geschwindigkeit aufgrund einer durchschlagenden Böe, kann das der total falsche Zeitpunkt sein, und die harte Landung wird unvermeidlich.
Vielleicht war dies hier der Fall.
Eine große deutsche Airline ignoriert deshalb auch die Empfehlung von Airbus und sagt:
Manual Flight = Manual Thrust.
Vielleicht war die Ursache der harten Landung aber auch eine manuelle Schubverringerung zum falschen Zeitpunkt (nach 18 Stunden um 3 Uhr morgens mit einem in diesen Bedingungen schwer zu handhabenden Flugzeug, das sich anders verhält, als die in den Flügen davor gelandeten A340/A330).
Der Flight-Recorder wird es wissen.
Die Ursache der harten Landung scheint also (wie bei jedem Luftfahrt-Incident) die Verkettung von vielen unglücklichen Umständen zu sein:
- Böiger Seitenwind
- Ein Flugzeug, das für diese Bedingungen nicht geschaffen (aber zugelassen) ist
- Müdigkeit der Crew
- zu viele Derivate eines Flugzeugtyps, die mit dem gleichen Rating geflogen werden können und müssen; die aber unterschiedliches Handling (in Ausnahmesituationen schnell abrufbar und umsetzbar) voraussetzen.
Naturgesetze kann man nicht ändern, aber folgende Maßnahmen können helfen:
- Verbesserung der Flugsteuerung. Dies kann allerdings nur von Airbus und nicht von der Airline erfolgen.
- Die Ankunftszeit im Tages-Rhythmus-Tief kann nur bedingt verändert werden.
- Die Müdigkeit von Besatzungen sollte durch entspanntere Umlaufpläne, die zu mehr Regeneration im Einklang mit dem Biorhythmus führen, signifikant verbessert werden. Ein Ausreizen der gesetzlichen Möglichkeiten ist vielleicht für den schnellen Profit einer Firma hilfreich – Berufspiloten dazu zu zwingen, diesen stressigen Lebenswandel bis zu einem Alter von 65 Jahren durchziehen zu müssen, aber ist kurzsichtig. (Wird in einer Neid-Republik jedoch stets gern genommen.)
- Mit Zunahme der technischen Varianten (Triebwerke, Winglets…) auch nur eines Flugzeugtyps Flotten in mehrere Teilflotten zu unterteilen. Auch wenn es zunächst vielleicht höhere Kosten verursacht. Der Komplettverlust eines A340 ist auch weit entfernt von kostenfrei.
Bleibt nur noch zu erwähnen, dass bei diesem Landeunfall nur das Flugzeug (und das Ego des Piloten) beschädigt wurde. Man möchte nicht wissen, wie weniger qualifizierte Piloten diese Landung gemeistert hätten.